Status and Prospects Quantum Computing Quantum Machine Learning

Prof. Dr. Kerstin Borras

Deutsches Elektronen-Synchrotron DESY and RWTH Aachen UniversityDESY Quantum Technology Task Force **qt-task-force@desy.de**

HELMHOLTZ

The Second Quantum Revolution is Transforming the World.

Decoding of Matter with novel methods and tools \rightarrow **get ready today !**

1st Quantum Revolution:

understand & apply \rightarrow ground-breaking: transistors, lasers etc.

2nd Quantum Revolution:

Identify, control, manipulate individual quanta \rightarrow exploit the potential

Quantum Advantage:

Improvement versus the best known conventional method

Quantum Technologies: Rethinking of our methods

- \rightarrow completely different principles
- pioneering work improves already our classical methods

maximizing our achievable scientific and economic success

The Second Quantum Revolution is Transforming the World.

Decoding of Matter with novel methods and tools \rightarrow **get ready today !**

1st Quantum Revolution:

understand & apply \rightarrow ground-breaking: transistors, lasers etc.

2nd Quantum Revolution:

Identify, control, manipulate individual quanta \rightarrow exploit the potential

Quantum Advantage:

Improvement versus the best known conventional method

Quantum Technologies: Rethinking of our methods

- \rightarrow completely different principles
- pioneering work improves already our classical methods

maximizing our achievable scientific and economic success

Quantum Computing is part of our Future.

Quantum Computing is opening new windows for our science today.

2nd Quantum Revolution:

manipulate quantum effects in customized systems and materials

 \rightarrow expands the useable phase space considerably:

space classical bit turns into a whole Bloch sphare one classical bit turns into a whole Bloch sphere

Example: System of *n* qubits

 \rightarrow computational basis states of this system are of the form $|x_1, x_2, ... x_n\rangle$
 \rightarrow susptium at the is appelled by 2ⁿ appellitudes.

 \rightarrow quantum state is specified by 2ⁿ amplitudes
 \rightarrow n=500 \rightarrow number is larger than the estimate

 \rightarrow *n*=500 \rightarrow number is larger than the estimated number of atoms in the Universe!
 \rightarrow storing all these complex numbers is not nessible on any senseivable classical so

 \rightarrow storing all these complex numbers is not possible on any conceivable classical computer.

Quantum Advantage:

For a given problem, the improvement in run time for a quantum computer versus

- a conventional computer operating the best known conventional algorithm.
- working on completely different principles than classic technology

superposition, entanglement, randomization

→ potential to solve challenges in **Complexity and Big Data**

Quantum Computing demands for a rethinking of our methods

 \rightarrow pioneering work improves already our classical methods

Quantum Computing in Particle Physics in Theory and Experiment.

Novel methods and tools for the 100x100 Challenge get ready today ! Published in PRX Quantum:

https://journals.aps.org/prxquantum/abstract/10.1103/

QC4HEP whitepaper, arXiv:2307.03236 PRXQuantum.5.037001

Alberto Di Meglio,^{1,*} Karl Jansen,^{2,3,†} Ivano Tavernelli,^{4,‡} Constantia Alexandrou,^{5,3} Srinivasan Arunachalam,⁶ Christian W. Bauer,⁷ Kerstin Borras, 8,9 Stefano Carrazza, ^{10, 1} Arianna Crippa,^{2, 11} Vincent Croft, ¹² Roland de Putter,⁶ Andrea Delgado,¹³ Vedran Dunjko,¹² Daniel J. Egger,⁴ Elias Fernández-Combarro,¹⁴ Elina Fuchs.^{1, 15, 16} Lena Funcke.¹⁷ Daniel González-Cuadra.^{18, 19} Michele Grossi.¹ Jad C. Halimeh.^{20, 21} Zoë Holmes.²² Stefan Kühn.² Denis Lacroix.²³ Randy Lewis.²⁴ Donatella Lucchesi.^{25, 26, 1} Miriam Lucio Martinez, ^{27, 28} Federico Meloni, ⁸ Antonio Mezzacapo, ⁶ Simone Montangero, ^{25, 26} Lento Nagano, ²⁹ Voica Radescu.³⁰ Enrique Rico Ortega.^{31, 32, 33, 34} Alessandro Roggero.^{35, 36} Julian Schuhmacher.⁴ Joao Seixas.^{37, 38, 39} Pietro Silvi, 25, 26 Panagiotis Spentzouris, ⁴⁰ Francesco Tacchino, ⁴ Kristan Temme, ⁶ Koji Terashi, ²⁹ Jordi Tura, ^{12, 41} Cenk Tüysüz,^{2, 11} Sofia Vallecorsa,¹ Uwe-Jens Wiese,⁴² Shinjae Yoo,⁴³ and Jinglei Zhang^{44, 45}

Abstract

Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural sciences and bevond, with the potential for achieving a so-called quantum advantage, namely a significant (in some cases exponential) speed-up of numerical simulations. In particular, the high-energy physics community plays a pivotal role in accessing the power of quantum computing, since the field is a driving source for challenging computational problems...

nesy. | Selected quantum computing activities at DESY | Karl Jansen | Bari, QUANTHEP, 25.9.2023

Page 3

Quantum Computing in Particle Physics in Theory and Experiment.

Novel methods and tools for the 100x100 Challenge get ready today !

Published in PRX Quantum:

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.037001

DESY.Page 6 Page 6 Page

Quantum Computing Activities at DESY

Quantum Computing will be part of our future

Quantum Computers have the potential to solve problems that cannot be addressed with classical computers

\blacktriangleright **Develop algorithms and methods in Theoretical Particle Physics**

■ Calculations in theory \rightarrow novel unique results &benchmark novel devices

LUXE EXPERIMENT SETU

- Applications in particle physics similar to other logistics problems (optimization of flight gate assignment)
- Error mitigation in QC calculations
- Optimization of Quantum Gate Circuits (to reduce noise)
- \blacktriangleright **Quantum Machine Learning (usually in hybrid mode) Develop machine learning and tensor network methods for QC**
	- Simulations for detectors at LHC (CERN), IBM
	- Tracking for LUXE (DESY), IBM
	- Particle identification at Belle II (KEK, Japan), Annealer
	- EFT Fits to find New Physics (Annealer)

no noise

Quantum Computing: From Theory towards Applications

From QED in 2+1 dimensions to Flight Gate Assignments

\blacktriangleright Variational Quantum Simulations (VQS) for QED

Particle Mass Δ = $E_1 - E_0$ \rightarrow physical quantity

Detecting a phase transitionat negative mass**→ not possible with MC methods**

Clemente G. et al, Strategies for the Determination of the Running Coupling of (2+1)-dimensional QED with Quantum Computing, https://arxiv.org/abs/2206.12454

► Very similar approach for **Flight Gate Assignment Optimization**find lowest energy ⇔ shortest path
same mathematics for problems in same mathematics for problems in traffic, logistics, aerospace, ...

Theoretical optimization:

Y. Chai, L. Funcke, T. Hartung, S. Kühn, T. Stollenwerk, P. Stornati, K. Jansen, arXiv:2302.11595Hardware Runs:

 Y. Chai, E. Epifanovsky, K. Jansen, A. Kaushik, S. Kühn, arxiv:2309.09686

40000 time in seconds

Methods for reliable Quantum Computing Calculations

Increase the Reliability for Quantum Computing Calculations
 $H = \sum_{i=1}^{N} \beta \left[\sigma_x(i) \sigma_x(i+1) + \sigma_y(i) \sigma_y(i+1) + \sigma_z(i) \sigma_z(i+1) \right] + J \sigma_z(i)$

- \blacktriangleright **Example for Error Mitigation** in Variational Quantum Simulation **VQS**
	- Model in Condensed Matter Physics: 1-Dimensional Heisenberg model, very prone to QC errors**Cured by own developed error mitigation methods**

Funcke L. et al, Measurement Error Mitigation in Quantum Computers Through Classical Bit-Flip Correction, arxiv:2007.03663, Phys. Rev. A 105, 062404

\blacktriangleright **Optimize Dimensional Expressivity of a Quantum Gate Circuit**

- Gate Operations are erroneus
- Develop methods for Dimensional Expressivity Analysis **Generate as many/complicated states as possible with fewest number of gates**

Funcke L. et al, Dimensional Expressivity Analysis of Quantum Circuits Quantum 5 (2021) 422

Software engineering for Noise Model Benchmarks

Increase the Reliability for Quantum Computing Calculations

- \blacktriangleright **Software Engineering Models for Error Mitigation**
	- **Systematic approach to train error** models with Machine Learning and perform benchmarks for quantum computing applications

Weber, T. et al (2023) "Construction and volumetric benchmarking of quantum computing noise models", arXiv:2306.08427, **IOPScience Physica Scripta, Volume 99, Number 6**
DESY. Kerstin Borras \vert Quantum Computing and Q

DESY.Page 10 Kerstin Borras | Quantum Computing and Quantum Machine Learning | |

bad

good

DASHH

UH

(b) $w = 2$

Particle Physics: What is our Universe made of ?

What are our elementary particles and their interaction to build matter and our Universe

Quantum Machine Learning for Detector Simulations in Particle Physics

Early examples in Experimental Particle Physics

$\frac{1}{2}$ **Quantum Machine Learning lies at the intersection of Quantum Computing and Machine Learning**

■ High Luminosity LHC (>2029) needs vast amount of simulations with 200 overlaid events, Big Data Analysis

LHC (~20 pile-up events)

LHC (~200 pile-up events)

$\frac{1}{2}$ **Develop machine learning methods for Quantum Computing**

Q-GAN (Quantum Generative Adversarial Network) simulations for detectors ■ (CERN Openlab with joint BMBF Gentner PhD Student) openlab تي:i

DESY.

Hybrid Q-GAN in One Dimension

Quantum Generative Adversarial Network

餐 **Down sample 3D shower image** \rightarrow **8 pixels** \rightarrow **3 qubits**

- $\frac{1}{2}$ **Use hybrid approach: quantum + classical**
- 餐 **Employ a Qiskit Q-GAN model developed by IBM***

DESY.Page 13Kerstin Borras | Quantum Computing and Quantum Machine Learning | |

Bundesministerium

quanten

Full Quantum Angle Generator (QAG)
Less parameters for complex data and robustness against noise

Less parameters for complex data and robustness against noise

The Quantum Angle Generator (QAG):represents a full quantum model

Utilizes angle encoding (instead of amplitude encoding). \rightarrow multiple individual images with pixel energies

Trained by objective functions (MMD, Corr) + a new quantum circuit:

- \rightarrow lightweight training
 \rightarrow trainable on real qu
- \rightarrow trainable on real quantum devices

Identify the best circuit with the lowest number of parameters, the best expressibility and the best entanglement capability.

DESY. Page 14Kerstin Borras | Quantum Machine Learning | Helmholtz Quantum Kick-PoF | 17 January 2023*Rehm, F. et al. Precise Image Generation on Current Noisy Quantum Computing Devices.IOP Quantum Science and Technology* https://doi.org/10.1088/2058-9565/ad0389. *PhD Thesis RWTH Aachen more details* http://doi.org/10.18154/RWTH-2023-09302

Angle Encoding

Rundesministerium

NiQ

quanten

Quantum Angle Generator: Model Accuracy

Less parameters for complex data and robustness against noise

The Quantum Angle Generator (QAG) achieves

good accuracy in the shower profiles and reproduces the correlations

Geant4 Ω $\mathbf{1}$ $\overline{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $5⁵$ $6 \cdot$ $\overline{5}$ 6° $0\quad1$ $\overline{2}$ $3 \quad 4$ $\overline{7}$ pixel

The QAG model learns complex image correlations due to highly entangled qubits in the quantum circuit.

Quantum Angle Generator: Noise Robustness

Less parameters for complex data and robustness against noise

Noise studies to test the robustness of the QAG model against noise:

- •in inference and in training
- • on quantum simulator:
	- simulated noise up to different (same) levels: readout / gate / readout + gate
	- real hardware noise (in different mixture) as given by IBM
- • on real quantum devices:
	- •ibmq_montreal
	- •ibm_cairo

Noise in Training

DESY.- Kerstin Borras | Quantum Machine Learning | Helmholtz Quantum Kick-PoF | 17 January 2023 **Page 17** *Rehm, F. et al. Precise Image Generation on Current Noisy Quantum Computing Devices. PhD Thesis of F.Rehm with details IOP Quantum Science and Technology https://doi.org/10.1088/2058-9565/ad0389.*

500

DESY.

Quantum Computing for Classical Optimization Problems

e-laser setup (Not in seal-

From Tracking to Logistics

 \blacktriangleright **Tracking at the LUXE Experiment @ DESY**

Q-GNN and VQE for particle tracking in the LUXE Experiment(Laser Und XFEL Experiment)**study of the influence of entanglement**

Particle tracking

Observe particles through their interaction with detectors → Need to single out each particle's trajectory from a
aloud of bits cloud of hits

First paper 2109.12636

Second paper: Crippa A. et al, Quantum algorithms for charged particle track reconstruction in the LUXE experiment,

Efficiency as a function of the field intensity ξ

Flight Gate Assignment

find lowest energy ⇔ shortest path
Same mathematics for problems in Same mathematics for problems in traffic, logistics, aerospace, ...

Quantum Graph Neural Network

Second paper: Crippa A. et al, Quantum algorithms for charged particle track reconstruction in the LUXE experiment, https://arxiv.org/abs/2304.01690First paper 2109.12636

Some Key Questions for the Future

Challenges and Opportunities in Quantum Computing

How can we profit from the higher encoding potential given by qubits?

How can we profit from different entanglements of qubits?

How can we use quantum devices to solve complex fitting problems?

How can quantum algorithms enable timing inclusion (4+D-tracking / 5 D-calorimetry?

п

QFitter for measurement combinations

 Quantum annealing-based method for fitting EFT coefficients to experimental measurements

2207.10088

How can we use quantum devices to solve complex problems in theory calculations, simulation, reconstruction, correlations, anomalies, tomography…

 $RY(\theta[0])$ \rightarrow $RY(\theta[3])$

 $RY(\theta[1])$ - $RY(\theta[2])$

How can we profit from the need to limit I/O by extracting features ?

How can we profit from the unique access to different Quantum Technology Computers?

DESY. Kerstin Borras **Page 21**Kerstin Borras | Quantum Computing and Quantum Machine Learning | |

Any Questions ?

Prof. Dr. Kerstin Borras kerstin.borras@desy.de

DESY Quantum Technology Task Force: qt-task-force@desy.de