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The Second Quantum Revolution is Transforming the World.

Decoding of Matter with novel methods and tools - get ready today !

1t Quantum Revolution:
understand & apply
- ground-breaking: transistors, lasers etc.

MICROSCOPIC SYSTEMS

MACROSCOPIC SYSTEMS

2" Quantum Revolution:
Identify, control, manipulate individual quanta
- exploit the potential "Bt " Aoms, moleules

* Fluctuatigng

| ]
: Quantyp, Mechanicg
X-ray Tadiatign

Quantum Advantage:
Improvement versus
the best known conventional method

Quantum Technologies: Rethinking of our methods
- completely different principles
- pioneering work improves already our classical methods

> maximizing our achievable scientific and economic success
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Quantum Computing is part of our Future Classical bt Quantum bit “qubit"

Binary system Two-state quantum system

Quantum Computing is opening new windows for our science today.

2"d Quantum Revolution:
manipulate quantum effects in customized systems and materials

- expands the useable phase space considerably:

one classical bit turns into a whole Bloch sphere B . eadsto
Example: System of n qubits unambiguous state

-> computational basis states of this system are of the form [x,, x,, ... X,,)

- quantum state is specified by 2" amplitudes

- n=500 > number is larger than the estimated number of atoms in the Universe!

- storing all these complex numbers is not possible on any conceivable classical computer.

Quantum Advantage:
For a given problem, the improvement in run time for a quantum computer versus
a conventional computer operating the best known conventional algorithm.
- working on completely different principles than classic technology

superposition, entanglement, randomization
- potential to solve challenges in Complexity and Big Data

Quantum Computing demands for a rethinking of our methods
- pioneering work improves already our classical methods
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Quantum Computing in Particle Physics in Theory and Experiment.

Novel methods and tools for the 100x100 Challenge—> get ready today ! Published in PRX Quantum:
https://journals.aps.org/prxquantum/abstract/10.1103/

QC4HEP whitepaper, arXiv:2307.03236 = 2mumams

Alberto Di Meglio,!: * Karl Jansen,?2: T Ivano Tavernelli,*:* Constantia Alexandrou,®? Srinivasan Arunachalam,®
Christian W. Bauer,” Kerstin Borras,®? Stefano Carrazza,'”! Arianna Crippa,®!! Vincent Croft,?
Roland de Putter,® Andrea Delgado,'® Vedran Dunjko,'? Daniel J. Egger,* Elias Ferndndez-Combarro,'
Elina Fuchs,!*151¢ Lena Funcke,'” Daniel Gonzalez-Cuadra,'® 19 Michele Grossi,! Jad C. Halimeh 22!

Zoé Holmes,?? Stefan Kiihn,? Denis Lacroix,>® Randy Lewis,?* Donatella Lucchesi,?* 26:1
Miriam Lucio Martinez,?"»?® Federico Meloni,® Antonio Mezzacapo,® Simone Montangero,?® 2% Lento Nagano,’
Voica Radescu,*® Enrique Rico Ortega,?!:32:3%:34 Alessandro Roggero,®* ¢ Julian Schuhmacher,* Joao Seixas,?”38 3
Pietro Silvi,>?¢ Panagiotis Spentzouris,*® Francesco Tacchino,* Kristan Temme,® Koji Terashi,?

Jordi Tura,'>*! Cenk Tiiysiiz,> ! Sofia Vallecorsa,! Uwe-Jens Wiese,*? Shinjae Yo0o,** and Jinglei Zhang**45

Abstract
Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural
sciences and beyond, with the potential for achieving a so-called quantum advantage, namely a significant
(in some cases exponential) speed-up of numerical simulations. In particular, the high-energy physics
community plays a pivotal role in accessing the power of quantum computing, since the field is a driving

source for challenging computational problems. ..

DESY. | Selected quantum computing activities at DESY | Karl Jansen | Bari, QUANTHEP, 25.9.2023 Page 3
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Quantum Computing in Particle Physics in Theory and Experlment

Novel methods and tools for the 100x100 Challenge—> get ready today !

Roadmap in Particle Physics Applications for the 100 x 100 Challenge

Theory Experiment
Application Category Algorithm Application Category
Jet/track
Real-time reconstruction
Phenomena Quantum VQE/ArQITE iy
Dynamics (= Classification
j><] w o
—_ oo Rare signal —‘C*
Low di’g?“SRO" EyTRIIIGE extracﬁon
. ‘;+ lj. Hybrid Qu-Cl | Regression
> > For & beyond -
* * ﬁ TN/QTN standard {'F

| Model

QLM/D-Theory Optimisation Qub et
T ~

'r'_ varQTE
ol SE o A=k

Optimisation

e 5 ¥ Generation
Naiilino Classification ONNs = e
oscillations ) dj]]]ll
P Y Experiment
N o2 Simulation
® Quantum SHAL
Kernels 1. 4}}’ ¥

Published in PRX Quantum:
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.5.037001
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Algorithm

Quantum
Kernels

QNNs

QAOA

Quantum
Annealing

HHL
Algorithm

QBMs
QCBMs

QGANs

N

100 Qubits
X
100 circuit gate depth
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DESY. (3%)

Quantum Computing Activities at DESY

Quantum Computing will be part of our future

Quantum Computers have the potential to solve problems A (2o

that cannot be addressed with classical computers “‘m.. fulnaise - corrected

> Develop algorithms and methods in Theoretical Particle Physics / Froumee !
= Calculations in theory > novel unique results &benchmark novel devices "‘ v

= Applications in particle physics similar to other logistics problems
(optimization of flight gate assignment)

= Error mitigation in QC calculations
= Optimization of Quantum Gate Circuits (to reduce noise)

> Quantum Machine Learning (usually in hybrid mode)
Develop machine learning and tensor network methods for QC

= Simulations for detectors at LHC (CERN), IBM = -

= Tracking for LUXE (DESY), IBM by
= Particle identification at Belle Il (KEK, Japan), Annealer | II il
= EFT Fits to find New Physics (Annealer) i'l I Bl sy
DESY. Kerstin Borras | Quantum Computing and Quantum Machine Learning | Page 7



DESY. (%9
Quantum Computing: From Theory towards Applications

> Var|at|onal Quantum Simulations (VQS) for QED

s (g) for Plaquette operator at dif ferent couplings (g) for OBC latt

= ; 1 Detecting a phase transition

: FE? Partlzle_ I\E/IassE at negative mass
B 1 “t1 to e - not possible with MC methods
- physical quantity wl | /
\ \/ Clemente G. et al, Strategies for the Determination of the
| Running Coupling of (2+1)-dimensional QED with

Quantum Computing, https://arxiv.orqg/abs/2206.12454

» Very similar approach for
Flight Gate Assignment Optimization
find lowest energy < shortest path
same mathematics for problems in

250

¥ |~
h.:-:(-
o —e

—&=

ol = |

¥ o~
5o -

200

. . . (i Gel el Cwd D) ) %_;IS]
traffic, logistics, aerospace, UU0 UUT &
fan 100
Theoretical optimization: +++ +++
Y. Chai, L. Funcke, T. Hartung, S. Kiihn, T. Stollenwerk, i
P. Stornati, K. Jansen, arXiv:2302.11595 0
Hardware Runs: = 0 20000 40000 60000
Y. Chai, E. Epifanovsky, K. Jansen, A. Kaushik, S. Kiihn, H Z - Q”(f -+ Z , k _| QIA (f ", SR
- )

arxiv:2309.09686
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DESY. 65

Methods for reliable Quantum Computing Calculations

Increase the Reliability for Quantum Computing Calculations

H =3 Blesfi +1) + oy(i)oy(i + 1) + 0.(i)o.(i + 1)] + Jo.(i)
» Example for Error Mitigation in Variational Quantum Simulation VQS - —— nonoise:
hi t It fast
= Model in Condensed Matter Physics: ‘h e SRS RS
1-Dimensional Heisenberg model, very prone to QC errors full noise corrected
epe . cannot find ok !
Cured by own developed error mitigation methods 74 5”1, ‘‘‘‘‘ : / spvinlsrste l
Funcke L. et al, Measurement Error Mitigation in Quantum Computers Through ; ."? A At '
Classical Bit-Flip Correction, arxiv:2007.03663, Phys. Rev. A 105, 062404 . . W kT R
§-sf i~ e« ¥ %
a x 4 *F: =
- o xf x
‘“" ,,,, e, - ’; :W
» Optimize Dimensional Expressivity of a Quantum Gate Circuit 0 RN oD ey
. [o) Rz(65) Ry (0s) - Rz(011) Ry (014) | Rz (617)
| |
Gate Operations are erroneus N i — o o
= Develop methods for Dimensional Expressivity Analysis * Reduction through
. . Dimensional Expressivity Analysis
Generate as many/complicated states as possible
with fewest number of gates K — — —
g [0) Rz(05) Ry (6s) Ry (614) [ Rz(617)
|0) — Ry (63) — Rz(0s) Ry (615) — Rz(618)

Funcke L. et al, Dimensional Expressivity Analysis of Quantum Circuits
Quantum 5 (2021) 422
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Software engineering for Noise Model Benchmarks

Increase the Reliability for Quantum Computing Calculations

» Software Engineering Models for
Error Mitigation

= Systematic approach to train error
models with Machine Learning and
perform benchmarks for quantum
computing applications

IBM noise model

# qubits

Width
@

O =
Ny By
EENEEN
EEEEN

Our trained noise model

B [ = = [

3
Depth

svinbol crror parameters | mnnber of parameters
S state preparation Psplq) N
D depolarization A (q) 4N -1
C crosstalk 0q(q) 2N
T thermal relaxation T)2(q) 2N
. Po=1(q). AT -
M measurement b ol ) 2N # qubits
| total I I | 1IN -1
gﬁ

i

Weber, T. et al (2023) “Construction and volumetric benchmarking
of quantum computing noise models”, arXiv:2306.08427,

IOPScience Physica Scripta, Volume 99, Number 6
DESY. Kerstin Borras |

CTEEC N
R EN
DEE .
JDNEe

.

3
Depth

# layers

Quantum Computing and Quantum Machine Learning

(z€")

i

bad

.| good

DASHH.

Average absolute error [Zumsse — Zapul Average absolute error [28%,, — 284
0.030{ - waincd o - Trained
= Qs 007 = Ot
00251
006
0.020{ 008
00154 E”‘
0.03
00104
0.02
0.005 1 -
0.000 0.00
1 2 3 4 s 1 2 3 4 s
depth d depth d

(a)w=1 (b)w=2
Average absolute error [Z8%, ~ Z8|

m— Tained
—

Average absolute error 244, — 284 |

- Trained
- Qisit

1 2 3 4 [
depth d
(c)w=3
Average absolute error (223, — 23|
0.035 mmm Trained " T
= Qiskit
0030
0.025
0.020
0.015
0010
0.005
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9 DESY.
Particle Physics: What is our Universe made of ? - QUANTUM

What are our elementary particles and their interaction to build matter and our Universe

Fundamfpﬁl particles: Known Matter

of matter (fermions)
I 1l 4 N 90/ 9

® Proton-Proton Collisions at the LHC

<15.5 Mev/c?

o

AL

lau

neutrino

0511 Mev/e * il [105.7 Mevic? ll [1.777 Gevie?|

-1 -1 -1
electron muen tau

Four fundamental forces:

ol puted

Electro-magnetic

Gauge bosons

Leptons

force Strong force
W _____ a < Proton
Weak force Gravitation

DESY. Kerstin Borras | Quantum Machine Learning Helmholtz Al FFT 7. December 2023 Page 11



Quantum Machine Learning for Detector Simulations in Particle Physics

Early examples in Experimental Particle Physics

<* Quantum Machine Learning lies at the intersection of I 5D images of particie showers |

Quantum Computing and Machine Learning “ in a calorimeter to measure
' the energy of the i mcommg particle I

= High Luminosity LHC (>2029) needs vast amount of simulations
with 200 overlaid events, Big Data Analysis / ''''''''''''''' 4

LHC (~20 pile-up events) LHC (~200 pile-up events)

y [cells)
=

» Develop machine learning methods for Quantum Computing

= Q-GAN (Quantum Generative Adversarial Network) simulations for detectors

CERN

(CERN Openlab with joint BMBF Gentner PhD Student) 7:- openlab

DESY. Kerstin Borras | Quantum Machine Learning | Helmholtz Quantum Kick-PoF | 17 January 2023 Page 12



i i : i DESY. #[EET QT
Hybrid Q-GAN in One Dimension ) DEsY. #| g

=¥ CERN BMBF
Quantum Generative Adversarial Network %I, openlab NiQ
N ] ] ] 8 quantum states:
** Down sample 3D shower image —> 8 pixels > 3 qubits  |900), |001), |010), |011),

|100), |101), [110), [111)

25 Pixel 8 Pixel

Quantum Generator

.....

Rv(8[e]) = Rv(e[3]) |~‘ﬂ— Classical Classical

eaED e - B odcihiw
prm— | E a_ {Fake @i
i3 RY(B[2]) —®— ¢ - i Data
Uniform ik Y o ----l ------ ll” : i i B
“* Use hybrid approach: quantum + classical Iniialization i Measurement i gea®i i~ ;
I Evaluate Gradients & : Data L |
I el B el L S !
s v T 0 R I
“* Employ a Qiskit Q-GAN model developed by IBM*
Q-GAN simulations in one dimension (with noise) .
IR, Relative Entropy PDF__(ReaI Hardware Noise) Rlative:Eotropy
et of] < readout e o
il noise
g full noise
| | bt ; real hardware > .

0 100 200 300 400 500 B0 700 0 50 100 150 200 %0 300

Epoch

(! Tl S e e e

7

Epoch

* https://qiskit.org/docxu mentation/machine-learning/tutorials/04_qggans_for_loading_ra ndom_distributions‘.html

DESY. Kerstin Borras | Quantum Computing and Quantum Machine Learning | | Page 13



e Qe
Full Quantum Angle Generator (QAG) [T QU

] ] =Y. CERN ) BMBF
Less parameters for complex data and robustness against noise iy openlab NiQ

Angle Encoding
The Quantum Angle Generator (QAG): i

represents a full quantum model ) 2
B =+- Emax =0.6 MeV
l g =8max

nw
At {le ener: 3 +_
Middle energy X (9 . -
Enm 4+

Utilizes angle encoding (instead of amplitude encoding). 6=0 b
- multiple individual images with pixel energies ; 7%

Trained by objective functions (MMD, Corr) + a new quantum circuit:
- lightweight training
—> trainable on real quantum devices

Identify the best circuit with the lowest number of parameters, o —o
T - o> o o
the best expressibility and the best entanglement capability. o lo> o

Rehm, F. et al. Precise Image Generation on Current Noisy Quantum Computing Devices.
I0P Quantum Science and Technology https://doi.org/10.1088/2058-9565/ad0389.  PhD Thesis RWTH Aachen more details http://doi.org/10.18154/RWTH-2023-09302

DESY. Kerstin Borras | Quantum Machine Learning | Helmholtz Quantum Kick-PoF | 17 January 2023 Page 14




Bundesministerium
*| for Bildung . quanten

Quantum Angle Generator: Model Accuracy IS te‘“";‘;:‘;“F
= "l. CER
Less parameters for complex data and robustness against noise iy openlab NiQ
The Quantum Angle Generator (QAG) achieves
good accuracy in the shower profiles and reproduces the correlations
Geant4
1.00
0.75 ;C:
0.50 %
E 025 ©
. 0.00 é
-0. 25%
-0.50
34567 01234567
pixel pixel

- The QAG model learns complex image correlations
due to highly entangled qubits in the quantum circuit.

Rehm, F. et al. Precise Image Generation on Current Noisy Quantum Computing Devices.
I0P Quantum Science and Technology https://doi.org/10.1088/2058-9565/ad0389.  PhD Thesis RWTH Aachen more details http://doi.org/10.18154/RWTH-2023-09302
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e Qe
Quantum Angle Generator: Noise Robustness = Q hB'I\:BF
=1 CERN
Less parameters for complex data and robustness against noise ’l:..*’gpenlab NiQ

Noise studies to test the robustness of the QAG model against noise:

* ininference and in training

* on quantum simulator:
» simulated noise up to different (same) levels: readout / gate / readout + gate
 real hardware noise (in different mixture) as given by IBM

» on real quantum devices:
« ibmqg_montreal

* ibm_cairo
Noise in Inference Noise in Training
o.010 | . Readout Noise 0.007 — PRI ReadOUt + Gate N0|Se
’ ——— CNOT Noise ] ) .
== Dendouniand ENCT [lome G0 - ::::L:: and CNOT Nolse Gate Nolse
0.008 4 —t— Simulator: ibmq_montreal L Sinittors b oirea) Readout NOlse

—f— Hardware: ibmgq_montreal 0.005

—&— Hardware: ibmq_montreal
¥ Simulator: ibm_cairo

oy 008 0.004 —&— Hardware: ibm_cairo VYV HWSImM
a1 3
= 5008 % 0.003 A HW M
0.002
0.002
o 0.001
k- A HW C
0.000 0.000
0 2 4 6 8 10 12 14 0 1 2 3 5 A 7 8
noise level in % noise level in %
Rehm, F. et al. Precise Image Generation on Current Noisy Quantum Computing Devices. PhD Thesis of FRehm with details
IOP Quantum Science and Technology https://doi.org/10.1088/2058-9565/ad0389. http://doi.org/10.18154/RWTH-2023-09302

DESY. Kerstin Borras | Quantum Machine Learning | Helmholtz Quantum Kick-PoF | 17 January 2023 Page 16



Bundesministerium
* | for Bildung % quanten

Quantum Angle Generator: Learning Noise ! - te‘h“;';:‘;:
=1 CERN
Less parameters for complex data and robustness against noise %,< openlab NiQ
Noise in Trainng * i o = Mesdost s, i 251%

o
i)

0,006 ~—— Readout and CNOT Noise

—¥— Simulator: ibmq_montreal
—&— Hardware: ibmq_montreal
~¥— Simulator: ibm_cairo

o
]

0.005 14 13 12 2 3 H 8 1 14 13 12

5 8 1
qubit index on hardware qubit index on hardware

0.004 —&— Hardware: ibm_cairo 06 o —— Correlation Loss
7] g g ——— MMD Loss
= 0.003 Calibration E ” H

w 0.4 0 0.4

0.002 Change ;: o é s

during §oz $os

diod tra|n|ng 5 01| —— Correlation Loss 501

0 1 2 3 4 5 6 7 8 0.0 g el i 0.0
noise level in % 0 100 200 300 400 500 0 100 200 300 400 500
epoch epoch
(a) (b) (c)
" ibmg_montreal il ibm_cairo . . .. .
' . * Noise in training + inference leads to better
; g accuracy.
e ¢ * Quantum Neural Networks can adapt to changing
~0.ZSE o ] )
_ error enviroment and learn the noise condition
0 1 2 3 4 5 6 7 2 3 4 5 86 17 ’ ° . .
pirel pirel T ke - robustness against and employing noise !
Rehm, F. et al. Precise Image Generation on Current Noisy Quantum Computing Devices. PhD Thesis of FRehm with details
I0P Quantum Science and Technology https://doi.org/10.1088/2058-9565/ad0389. http://doi.org/10.18154/RWTH-2023-09302
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DESY. @
QUANTUM
First paper 2109.12636

Quantum Computing for Classical Optimization Problems

» Tracking at the LUXE Experiment @ DESY

LUXE EXPERIMENT SETUP

Q-GNN and VQE for )

particle tracking = B
in the LUXE Experiment v =iy s
(Laser Und XFEL Experiment) : ///

study of the influence of entanglement

Particle tracking [m]

Observe particles through their interaction with detectors
- Need to single out each particle’s trajectory from a
cloud of hits

DESY. Kerstin Borras Quantum Computing and Quantum Machine Learning

Second paper: Crippa A. et al, Quantum algorithms for charged particle
track reconstruction in the LUXE experiment,
https://arxiv.orqg/abs/2304.01690

Multiple Scattering included

1.0 Multiple Scattering included 10+

o
©

Efficiency
o
@
Efficiency
e
]

o
~

0.6 o —¥— Eigensolver —4— full entanglement
~¥- Eigensolver —#= VQE #— linear entanglement hamiltonian driven \
#- GNN - Conventional —— circular entanglement
= 3 I : 41— 5 : :
o3 4 5 6 7 9 4 5 6 7
£ £

Efficiency as a function of the field intensity &

Zi:» *++-+++ 30

Ry e
\'v,g\}\“"%
AL +++ +++

]
0 20000 40000 60000

H =57 Qyi0} + Lt Qo ¢

Flight Gate Assignment

find lowest energy < shortest path
Same mathematics for problems in traffic, logistics, aerospace, ...
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) DESY. (639
Quantum Graph Neural Network

Second paper: Crippa A. et al, Quantum algorithms for charged particle
track reconstruction in the LUXE experiment,
https://arxiv.org/abs/2304.01690

ooe
XX
XX

Input network encodes information

(10 hidden features) € RY
Edge and node nets applied 4 times ‘
(as many as the tracker layers) 0) v 1 -
k k 1
Retain edges with scores (bo ® 7] 0) - 1EC(; I N - € [0,1]
above fixed threshold L, T = - () |PQCO)|| # |— — o
[vj.inpur ® vj.ompm @ v;] : i € [0,1 ]N,-)
DR :
\ J N o
Y H_j
FCNN | QNN FCNN2

DESY. Kerstin Borras Quantum Computing and Quantum Machine Learning Page 19



Yosst 65

= = First paper 2109.12636

A I g O r It h m I C pe rfO r m a n Ce Second paper: Crippa A. et al, Quantum algorithms for charged particle

. . . i i i track reconstruction in the LUXE experiment,

Based on ideal classical simulations of auantum circuits https://arxiv.org/abs/2304.01690
2 = | - T ' T - | 1 T o 0.2 T T T I T T T - 3
s I 1 Soasf : =
3 : E @ '°F 40 TW laser, e-laser :
i 0.95 - B s 0'165_ —— Matrix diagonalisation, 7 qubits _é
0.9F k 0.14- & VQE, 7 qubits 3
- : 0.12F 1 CKF —
0855 40 TW laser, ¢-laser E 04— I QGNN i
0.8;— —— Matrix diagonalisation, 7 qubits —; 0.08;— £ QGNN (limited training data) -
o7sf § VaETauis 1 oo )
07F ¥ QGNN E i 3 E
- 7 QGNN (limited training data) \ 0.02- C
0.65 - | L l L | I ] 1 | - 0 - ; . |
3 4 5 6 i 4 5 6 7

§ g

Excellent performance, in line with state-of-the-art classical tracking

Eﬂ:iCienCy = generated
= Quantum algorithms have higher efficiency but ~2x fakes tracks
Not all methods available for each value of ¢ (due to computational limitations) Fake rate = tracks
Performed also tests with quantum hardware (ibm_nairobi) reconstructed

DESY. Kerstin Borras | Quantum Computing and Quantum Machine Learning | Page 20



Some Key Questions for the Future

Challenges and Opportunities in Quantum Computing

How can we profit from the higher How can quantum algorithms
encoding potential enable timing inclusion
given by qubits? (4+D-tracking / 5 D-calorimetry?

How can we profit from different s [ o o Lo |—— el B =i
entanglements of qubits? e N e o Hel —
How can we use quantum devices QFitter for measurement combinations
to solve complex fitting problems? Quantum annealing-based method for fitting EFT coefficients 2207.10088

to experimental measurements

How can we use quantum devices to solve complex problems in theory calculations,
simulation, reconstruction, correlations, anomalies, tomography...

How can we profit from the need to How can we profit from the unique access to different
limit I/0 by extracting features ? Quantum Technology Computers?

DESY. Kerstin Borras Quantum Computing and Quantum Machine Learning Page 21



Any
Questions ?

Prof. Dr. Kerstin Borras kerstin.borras@desy.de

DESY Quantum Technology Task Force: qt-task-force@desy.de




